Formation and Dissociation of Methane Hydrates from Seawater in Consolidated Sand: Mimicking Methane Hydrate Dynamics beneath the Seafloor
نویسندگان
چکیده
Methane hydrate formation and dissociation kinetics were investigated in seawater-saturated consolidated Ottawa sand-pack under sub-seafloor conditions to study the influence of effective pressure on formation and dissociation kinetics. To simulate a sub-seafloor environment, the pore-pressure was varied relative to confining pressure in successive experiments. Hydrate formation was achieved by methane charging followed by sediment cooling. The formation of hydrates was delayed with increasing degree of consolidation. Hydrate dissociation by step-wise depressurization was instantaneous, emanating preferentially from the interior of the sand-pack. Pressure drops during dissociation and in situ temperature controlled the degree of endothermic cooling within sediments. In a closed system, the post-depressurization dissociation was succeeded by thermally induced dissociation and pressure-temperature conditions followed theoretical methane-seawater equilibrium conditions and exhibited excess pore pressure governed by the pore diameter. These post-depressurization equilibrium values for the methane hydrates in seawater saturated consolidated sand-pack were used to estimate the enthalpy of dissociation of 55.83 ± 1.41 kJ/mol. These values were found to be lower than those OPEN ACCESS Energies 2013, 6 6226 reported in earlier literature for bulk hydrates from seawater (58.84 kJ/mol) and pure water (62.61 kJ/mol) due to excess pore pressure generated within confined sediment system under investigation. However, these observations could be significant in the case of hydrate dissociation in a subseafloor environment where dissociation due to depressurization could result in an instantaneous methane release followed by slow thermally induced dissociation. The excess pore pressure generated during hydrate dissociation could be higher within fine-grained sediments with faults and barriers present in subseafloor settings which could cause shifting in geological layers.
منابع مشابه
Effect of the Properties of Porous Media on Hydrate Stability
Large reservoirs of methane hydrate exist in arctic permafrost and seafloor sediments. The physical properties of the permafrost and marine sediments are believed to affect hydrate stability. In 2004, Uchida et al. investigated the decomposition of methane hydrates formed in porous media using a laboratory pressure facility. They observed a shift of the hydrate stability curve and concluded tha...
متن کاملFinal Technical Report on : Controls on Gas Hydrate Formation and Dissociation ,
2 Disclaimer " This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disc...
متن کاملA Fugacity Approach for Prediction of Phase Equilibria of Methane Clathrate Hydrate in Structure H
In this communication, a thermodynamic model is presented to predict the dissociation conditions of structure H (sH) clathrate hydrates with methane as help gas. This approach is an extension of the Klauda and Sandler fugacity model (2000) for prediction of phase boundaries of sI and sII clathrate hydrates. The phase behavior of the water and hydrocarbon system is modeled using the Peng-Robinso...
متن کاملRaman spectroscopic measurements of synthetic gas hydrates in the ocean
A Raman spectrometer extensively modified for deep ocean use was used to measure synthetic hydrates formed in an ocean environment. This was the first time hydrates formed in the ocean have been measured in situ using Raman spectroscopy. Gas hydrates were formed in situ in the Monterey Bay by pressurizing a Pyrex cell with various gas mixtures. Raman spectra were obtained for sI methane hydrate...
متن کاملFormation and dissociation studies for optimizing the uptake of methane by methane hydrates
Characteristics such as temperature and pressure profiles for methane hydrate formation and dissociation in pure water, simulated seawater, and water–surfactant systems have been established. A hysteresis effect has been observed for repeated formation–dissociation cycles of the same methane–water system. In an attempt to maximize the uptake of methane during methane hydrate formation, the addi...
متن کامل